jueves, 27 de mayo de 2010
jueves, 4 de junio de 2009
viernes, 29 de mayo de 2009
9. MATEMATICAS Y TECNOLOGIA
viernes, 8 de mayo de 2009
10. Los numeros sagrados
El número e es uno de los números más importantes en la matemática,[1] junto con el número π, la unidad imaginaria i y el 0 y el 1, por ser los elementos neutros de la adición y la multiplicación, respectivamente. Curiosamente, la identidad de Euler los relaciona (eiπ+1=0) de manera asombrosa. Además, en virtud de la fórmula de Euler, es posible expresar cualquier número complejo en notación exponencial
El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.
EL NUMERO AUREOEl número áureo o de oro (también llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en honor al escultor griego Fidias), es el número irracional:Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.
EL NUMERO AUREO EN EL CURPO HUMANO
La Anatomía de los humanos se basa en una relación Φ estadística y aproximada, así vemos que:-La relación entre la altura de un ser humano y la altura de su ombligo.-La relación entre la distancia del hombro a los dedos y la distancia del codo a los dedos.-La relación entre la altura de la cadera y la altura de la rodilla.-La relación entre el primer hueso de los dedos (metacarpiano) y la primera falange, o entre la primera y la segunda, o entre la segunda y la tercera, si dividimos todo es Φ.-La relación entre el diámetro de la boca y el de la nariz-Es Φ la relación entre el diámetro externo de los ojos y la línea inter-pupilar-Cuando la tráquea se divide en sus bronquios, si se mide el diámetro de los bronquios por el de la tráquea se obtiene Φ, o el de la aorta con sus dos ramas terminales (ilíacas primitivas
EL NUMERO AUREO EN LA NATURALEZA
En la naturaleza, hay muchos elementos relacionados con la sección áurea:-Existen cristales de Pirita dodecaédricos pentagonales (piritoedros)cuyas caras son pentágonos perfectos.-Leonardo de Pisa (Fibonacci), en su Libro de los ábacos (Liber abacci, 1202, 1228), usa la sucesión que lleva su nombre para calcular el número de pares de conejos n meses después de que una primera pareja comienza a reproducirse (suponiendo que los conejos están aislados por muros, se empiezan a reproducir cuando tienen dos meses de edad, tardan un mes desde la fecundación hasta la parición y cada camada es de dos conejos). Este es un problema matemático puramente independiente de que sean conejos los involucrados. En realidad, el conejo común europeo tiene camadas de 4 a 12 individuos y varias veces al año, aunque no cada mes, pese a que la preñez dura 32 días. El problema se halla en las páginas 123 y 124 del manuscrito de 1228, que fue el que llegó hasta nosotros, y parece que el planteo recurrió a conejos como pudiera haber sido a otros seres; es un soporte para hacer comprensible una incógnita, un acertijo matemático . El cociente de dos términos sucesivos de la Sucesión de Fibonacci tiende a la sección áurea o al número áureo si la fracción resultante es propia o impropia, respectivamente. Lo mismo sucede con toda sucesión recurrente de orden dos, según demostraron Barr y Schooling en la revista The Field del 14 de diciembre de 1912.
-La relación entre la cantidad de abejas macho y abejas hembra en un panal.-La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).-La distribución de las hojas en un tallo.
-La relación entre las nervaduras de las hojas de los árboles-La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).-La distancia entre las espirales de una Piña.-La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos.
-Para que las hojas esparcidas de una planta o las ramas alrededor del tronco tengan el máximo de insolación con la mínima interferencia entre ellas, éstas deben crecer separadas en hélice ascendente según un ángulo constante y teóricamente igual a 360º (2 - φ) ≈ 137º 30' 27,950 580 136 276 726 855 462 662 132 999..." En la naturaleza se medirá un ángulo práctico de 137º 30' o de 137º 30' 28" en el mejor de los casos.
EL NUMERO AUREO EN LA MUSICA
Es la proporcion de longitud entre formas más usual en el Universo. Muchos la conocemos como el numero de oro o “fi” para los amigos. En realidad esta proporcion perfecta era ya conocida por los sumerios alrededor del 3200 a.c., aunque el mundo occidental la conoció a traves de los griegos con el nombre de “La Sección” (aurea).
Podemos encontrar a Fi en la Naturaleza, en las galaxias y, como no, en las matemáticas que la descubrieron. Una serie muy relacionada con el numero aureo es la serie de Fibonacci, cuyos primeros elementos son 0 y 1 y los siguientes son siempre la suma de los dos anteriores. Esta famosa serie esconde en si tambien la proporcion perfecta que ha sido usada tanto en estudios antropomorficos, cono el de Leonardo, arquitectura, como el Partenon de Fidias, en las Meninas de Velazquez, y en un sin fin de obras.
Sin embargo, al parecer, la proporcion perfecta que hace a nuestra vista las cosas mas bellas, no solo se limita a las distancias fisicas, sino tambien al tiempo. Hace un par de dias pude escuchar una danza de ballet de Debussy en la radio, al que admiro mucho, en la que se decia que la proporcion de tiempos entre secciones era en efecto, la seccion Aurea. Indagando mas sobre el tema, al parecer, Debussy en varias ocasiones especificó los tiempos con que se debian tocar ciertas piezas para que esta relacion se cumpliera. Segun Mario Livio, director del instituto que gestiona el Hubble, muy interesado en el estudio del numero aureo:
–Debussy conocía a un grupo de pintores llamados Les Nabis. Y ellos conocían la sección áurea y hablaban a menudo del tema. Así que él posiblemente habló de ello. Y también escribió una vez una carta a su editor, y le dijo: “en la obra que te he mandado, falta un compás, pero es muy importante para el número, para el número de oro”.–
Por ejemplo, la introduccion de 55 barras de ’Dialogue du vent et la mer’ en ‘La Mer, se separa en 5 secciones o compases de 21, 8, 8, 5 y 13 barras. El punto medio de la relacion en la barra 34 en esta estrucutra queda señalado por la entrada de los trombones, con el uso del main motif desde los tres movimientos usados en la seccion central alrededor de ese punto.(Howat, 1983)
Por supuesto, no faltan los que son excepticos ante el tema, que ven mas una busqueda de sensacionalismo. En definitiva es como siempre cuestion de fiarse de nuestros sentidos, que si saben captar la armonia del numero de Oro, escuchar su musica y comprobarlo nosotros mismos.
viernes, 24 de abril de 2009
aplicaciones matematicas
Básicamente, Tim, ante la necesidad de distribuir e intercambiar información acerca de sus investigaciones de una manera más efectiva, desarrolló las ideas que forman parte de la web. Tim y su grupo desarrollaron lo que por sus siglas en inglés se denominan: Lenguaje HTML (HyperText Markup Language) o lenguaje de etiquetas de hipertexto; el protocolo HTTP (HyperText Transfer Protocol); y el sistema de localización de objetos en la web URL (Uniform Resource Locator). Muchas de las ideas plasmadas por Berners-Lee podemos encontrarlas en el proyecto Xanadu que propuso Ted Nelson y el memex de Vannevar Bush.
Entre 1982 y 1986, Cerf diseñó el MCI MAIL, primer servicio comercial de correo electrónico que se conectaría a Internet.
En 1992 fue uno de los fundadores de la Internet Society y su primer presidente.
Actualmente Vinton Cerf es el Chief Internet Evangelist de Google, ocupación que compagina con el cargo de presidente del ICANN.
viernes, 27 de marzo de 2009
Los fractales
viernes, 6 de febrero de 2009
8. matematicas y arte
De 1918 a 1921, Ródchenko, bajo influencia de Malévich y Tatlin, creaba series de premisas formales, como la superficie plana, la factura, la línea, la mancha, y también bajo el influjo de la revolución bolchevique, pues su obra tenía como objetivo una sociedad ordenada.Ródchenko se hace famoso en los debates artísticos, de donde surge el Movimiento Constructivista, el artista se convierte en un ingeniero visual.La nueva política económica provocó que la avant-garde perdiera el privilegio artístico, teniendo que competir contra otros grupos artísticos. En 1923, deciden afrontar esta pérdida de privilegio fundando el Frente de Artistas de Izquierda, también llamado LEF (Lévyi Front iskusstv). Ródchenko contribuyó en este grupo tanto teóricamente (escribiendo artículos), como prácticamente (realizando portadas para las revistas del grupo).Ródchenko exploró el fotomontaje para el diseño de carteles y cubiertas de libros. Lo usó como una alternativa a la pintura y que se beneficiaba de su reproducción automática que le hacía tener una audiencia masiva. Fue en 1924, al emplear materiales cada vez más peculiares para sus fotomontajes cuando recurrió al empleo de la cámara fotográfica.En el campo de la fotografía Ródchenko fue también célebre. Como la cámara permitía tomar fotos en cualquier posición, dedujo que la fotografía correspondía a la actividad del ojo humano. De esta forma usó la cámara fotográfica para crear sensaciones desconcertantes, a la vez que usaba las fotografías con un objetivo de compromiso social. Formalmente, las fotografías solían ser o planos cenitales o planos nadir, planos opuestos totalmente al Pictorialismo y que impactaban al espectador, causándole dificultades en reconocer el objeto fotografiado. Fue así como Ródchenko se propuso liberar a la fotografía de todas las convenciones y puntos de vista comunes en la época, lo que le convirtió en uno de los más importantes pioneros del constructivismo fotográfico.
Maurits Cornelis Escher, más conocido como M. C. Escher (Leeuwarden Países Bajos, 17 de junio de 1898 - Baarn Holanda, 27 de marzo de 1972), artista holandés, conocido por sus grabados en madera, xilografías y litografías que tratan sobre figuras imposibles, teselaciones y mundos imaginarios.
Su obra experimenta con diversos métodos de representar (en dibujos de 2 ó 3 dimensiones) espacios paradójicos que desafían a los modos habituales de representación.
La obra de Maurits Cornelis Escher ha interesado a muchos matemáticos.
No fue precisamente un estudiante brillante, y sólo llegó a destacar en las clases de dibujo. En 1919 y bajo presión paterna empieza los estudios de arquitectura en la Escuela de Arquitectura y Artes Decorativas de Haarlem, estudios que abandonó poco después para pasar como discípulo de un profesor de artes gráficas, Jessurum de Mesquitas. Adquirió unos buenos conocimientos básicos de dibujo, y destacó sobremanera en la técnica de grabado en madera, la cual llegó a dominar con gran maestría.
Polya nació en Budapest el 13 de diciembre de 1887. En un principio no se sintió especialmente atraído por las matemáticas, sino por la literatura y la filosofía. Su profesor de esta última, el Prof. Alexander, le sugirió que siguiera cursos de física y de matemáticas para mejorar su formación filosófica. Este consejo marcó para siempre su carrera. Las magníficas lecciones de Física de Loránd Eötvös, y las no menos excelentes de Matemáticas de Lipót Fejér influyeron decisivamente en la vida y obra de Pólya. Entre los discípulos de Fejér estaban Marcel Riesz, Otto Szás, Mihaly Fekete, Gábor Szegö, Tibor Radó, y más tarde Paul Erdös y Paul Turán. Además de las clases "regulares", Fejér se reunía con ellos en un café de Budapest y resolvía problemas mientras les contaba historias y anécdotas sobre los matemáticos que había conocido.
En 1940, huyendo de Hitler, Pólya y su esposa suiza (Stella V. Weber) se trasladaron a los Estados Unidos. Pólya hablaba (según él, bastante mal) además del húngaro, alemán, francés e inglés, y podía leer y entender algunos más. Se instalaron en California, y obtuvo trabajo en la Universidad de Stanford. Durante su larga vida, académica y profesional, Pólya recibió numerosos premios y galardones por su excepcional trabajo sobre la enseñanza de las matemáticas y su importantísima obra investigadora.
Hueso nazari
El hueso nazarí es un polígono cóncavo de doce lados, se obtiene a partir de un cuadrado en el que se recortan dos trapecios de dos lados opuestos y se colocan mediante giros en los otros dos lados también opuestos. Como en todos los polígonos nazaríes se conserva el área del polígono inicial.
EL PETALO
La dinastía nazarí, descendiente de Yusuf ben Nazar, reinó en Granada desde el siglo XIII al XV. Granada en general, y La Alhambra, en particular, vivieron entonces una época de esplendor que ha quedado reflejada en sus construcciones.
Una tesela utilizada para recubrir los zócalos de la Alambra es la conocida como “pétalo nazarí” esta figura se obtiene a partir de un rombo formado por dos triángulos equiláteros, mediante la traslación de dos pequeños segmentos circulares que se recortan de dos de los lados y se colocan en los lados paralelos.
El pétalo ha sido utilizado por otras culturas y religiones para recubrir superficies, por ejemplo en la catedral de Burgos.