jueves, 4 de junio de 2009
indice
1. Enlaces de interes
2. Grandes matematicos
3. Videos matematicos
4. Matematicas:juegos y diversiones
5. libros de matematicas
6. Geometria
7. Hojas de problemas
8. Matematicas y arte
9. Matematicas y tecnologia
10. Numeros extraordinarios
viernes, 29 de mayo de 2009
9. MATEMATICAS Y TECNOLOGIA
viernes, 8 de mayo de 2009
10. Los numeros sagrados
El número e es uno de los números más importantes en la matemática,[1] junto con el número π, la unidad imaginaria i y el 0 y el 1, por ser los elementos neutros de la adición y la multiplicación, respectivamente. Curiosamente, la identidad de Euler los relaciona (eiπ+1=0) de manera asombrosa. Además, en virtud de la fórmula de Euler, es posible expresar cualquier número complejo en notación exponencial
El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.
EL NUMERO AUREOEl número áureo o de oro (también llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en honor al escultor griego Fidias), es el número irracional:Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.
EL NUMERO AUREO EN EL CURPO HUMANO
La Anatomía de los humanos se basa en una relación Φ estadística y aproximada, así vemos que:-La relación entre la altura de un ser humano y la altura de su ombligo.-La relación entre la distancia del hombro a los dedos y la distancia del codo a los dedos.-La relación entre la altura de la cadera y la altura de la rodilla.-La relación entre el primer hueso de los dedos (metacarpiano) y la primera falange, o entre la primera y la segunda, o entre la segunda y la tercera, si dividimos todo es Φ.-La relación entre el diámetro de la boca y el de la nariz-Es Φ la relación entre el diámetro externo de los ojos y la línea inter-pupilar-Cuando la tráquea se divide en sus bronquios, si se mide el diámetro de los bronquios por el de la tráquea se obtiene Φ, o el de la aorta con sus dos ramas terminales (ilíacas primitivas
EL NUMERO AUREO EN LA NATURALEZA
En la naturaleza, hay muchos elementos relacionados con la sección áurea:-Existen cristales de Pirita dodecaédricos pentagonales (piritoedros)cuyas caras son pentágonos perfectos.-Leonardo de Pisa (Fibonacci), en su Libro de los ábacos (Liber abacci, 1202, 1228), usa la sucesión que lleva su nombre para calcular el número de pares de conejos n meses después de que una primera pareja comienza a reproducirse (suponiendo que los conejos están aislados por muros, se empiezan a reproducir cuando tienen dos meses de edad, tardan un mes desde la fecundación hasta la parición y cada camada es de dos conejos). Este es un problema matemático puramente independiente de que sean conejos los involucrados. En realidad, el conejo común europeo tiene camadas de 4 a 12 individuos y varias veces al año, aunque no cada mes, pese a que la preñez dura 32 días. El problema se halla en las páginas 123 y 124 del manuscrito de 1228, que fue el que llegó hasta nosotros, y parece que el planteo recurrió a conejos como pudiera haber sido a otros seres; es un soporte para hacer comprensible una incógnita, un acertijo matemático . El cociente de dos términos sucesivos de la Sucesión de Fibonacci tiende a la sección áurea o al número áureo si la fracción resultante es propia o impropia, respectivamente. Lo mismo sucede con toda sucesión recurrente de orden dos, según demostraron Barr y Schooling en la revista The Field del 14 de diciembre de 1912.
-La relación entre la cantidad de abejas macho y abejas hembra en un panal.-La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).-La distribución de las hojas en un tallo.
-La relación entre las nervaduras de las hojas de los árboles-La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).-La distancia entre las espirales de una Piña.-La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos.
-Para que las hojas esparcidas de una planta o las ramas alrededor del tronco tengan el máximo de insolación con la mínima interferencia entre ellas, éstas deben crecer separadas en hélice ascendente según un ángulo constante y teóricamente igual a 360º (2 - φ) ≈ 137º 30' 27,950 580 136 276 726 855 462 662 132 999..." En la naturaleza se medirá un ángulo práctico de 137º 30' o de 137º 30' 28" en el mejor de los casos.
EL NUMERO AUREO EN LA MUSICA
Es la proporcion de longitud entre formas más usual en el Universo. Muchos la conocemos como el numero de oro o “fi” para los amigos. En realidad esta proporcion perfecta era ya conocida por los sumerios alrededor del 3200 a.c., aunque el mundo occidental la conoció a traves de los griegos con el nombre de “La Sección” (aurea).
Podemos encontrar a Fi en la Naturaleza, en las galaxias y, como no, en las matemáticas que la descubrieron. Una serie muy relacionada con el numero aureo es la serie de Fibonacci, cuyos primeros elementos son 0 y 1 y los siguientes son siempre la suma de los dos anteriores. Esta famosa serie esconde en si tambien la proporcion perfecta que ha sido usada tanto en estudios antropomorficos, cono el de Leonardo, arquitectura, como el Partenon de Fidias, en las Meninas de Velazquez, y en un sin fin de obras.
Sin embargo, al parecer, la proporcion perfecta que hace a nuestra vista las cosas mas bellas, no solo se limita a las distancias fisicas, sino tambien al tiempo. Hace un par de dias pude escuchar una danza de ballet de Debussy en la radio, al que admiro mucho, en la que se decia que la proporcion de tiempos entre secciones era en efecto, la seccion Aurea. Indagando mas sobre el tema, al parecer, Debussy en varias ocasiones especificó los tiempos con que se debian tocar ciertas piezas para que esta relacion se cumpliera. Segun Mario Livio, director del instituto que gestiona el Hubble, muy interesado en el estudio del numero aureo:
–Debussy conocía a un grupo de pintores llamados Les Nabis. Y ellos conocían la sección áurea y hablaban a menudo del tema. Así que él posiblemente habló de ello. Y también escribió una vez una carta a su editor, y le dijo: “en la obra que te he mandado, falta un compás, pero es muy importante para el número, para el número de oro”.–
Por ejemplo, la introduccion de 55 barras de ’Dialogue du vent et la mer’ en ‘La Mer, se separa en 5 secciones o compases de 21, 8, 8, 5 y 13 barras. El punto medio de la relacion en la barra 34 en esta estrucutra queda señalado por la entrada de los trombones, con el uso del main motif desde los tres movimientos usados en la seccion central alrededor de ese punto.(Howat, 1983)
Por supuesto, no faltan los que son excepticos ante el tema, que ven mas una busqueda de sensacionalismo. En definitiva es como siempre cuestion de fiarse de nuestros sentidos, que si saben captar la armonia del numero de Oro, escuchar su musica y comprobarlo nosotros mismos.
viernes, 24 de abril de 2009
aplicaciones matematicas
Básicamente, Tim, ante la necesidad de distribuir e intercambiar información acerca de sus investigaciones de una manera más efectiva, desarrolló las ideas que forman parte de la web. Tim y su grupo desarrollaron lo que por sus siglas en inglés se denominan: Lenguaje HTML (HyperText Markup Language) o lenguaje de etiquetas de hipertexto; el protocolo HTTP (HyperText Transfer Protocol); y el sistema de localización de objetos en la web URL (Uniform Resource Locator). Muchas de las ideas plasmadas por Berners-Lee podemos encontrarlas en el proyecto Xanadu que propuso Ted Nelson y el memex de Vannevar Bush.
Entre 1982 y 1986, Cerf diseñó el MCI MAIL, primer servicio comercial de correo electrónico que se conectaría a Internet.
En 1992 fue uno de los fundadores de la Internet Society y su primer presidente.
Actualmente Vinton Cerf es el Chief Internet Evangelist de Google, ocupación que compagina con el cargo de presidente del ICANN.
viernes, 27 de marzo de 2009
Los fractales
viernes, 6 de febrero de 2009
8. matematicas y arte
De 1918 a 1921, Ródchenko, bajo influencia de Malévich y Tatlin, creaba series de premisas formales, como la superficie plana, la factura, la línea, la mancha, y también bajo el influjo de la revolución bolchevique, pues su obra tenía como objetivo una sociedad ordenada.Ródchenko se hace famoso en los debates artísticos, de donde surge el Movimiento Constructivista, el artista se convierte en un ingeniero visual.La nueva política económica provocó que la avant-garde perdiera el privilegio artístico, teniendo que competir contra otros grupos artísticos. En 1923, deciden afrontar esta pérdida de privilegio fundando el Frente de Artistas de Izquierda, también llamado LEF (Lévyi Front iskusstv). Ródchenko contribuyó en este grupo tanto teóricamente (escribiendo artículos), como prácticamente (realizando portadas para las revistas del grupo).Ródchenko exploró el fotomontaje para el diseño de carteles y cubiertas de libros. Lo usó como una alternativa a la pintura y que se beneficiaba de su reproducción automática que le hacía tener una audiencia masiva. Fue en 1924, al emplear materiales cada vez más peculiares para sus fotomontajes cuando recurrió al empleo de la cámara fotográfica.En el campo de la fotografía Ródchenko fue también célebre. Como la cámara permitía tomar fotos en cualquier posición, dedujo que la fotografía correspondía a la actividad del ojo humano. De esta forma usó la cámara fotográfica para crear sensaciones desconcertantes, a la vez que usaba las fotografías con un objetivo de compromiso social. Formalmente, las fotografías solían ser o planos cenitales o planos nadir, planos opuestos totalmente al Pictorialismo y que impactaban al espectador, causándole dificultades en reconocer el objeto fotografiado. Fue así como Ródchenko se propuso liberar a la fotografía de todas las convenciones y puntos de vista comunes en la época, lo que le convirtió en uno de los más importantes pioneros del constructivismo fotográfico.
Maurits Cornelis Escher, más conocido como M. C. Escher (Leeuwarden Países Bajos, 17 de junio de 1898 - Baarn Holanda, 27 de marzo de 1972), artista holandés, conocido por sus grabados en madera, xilografías y litografías que tratan sobre figuras imposibles, teselaciones y mundos imaginarios.
Su obra experimenta con diversos métodos de representar (en dibujos de 2 ó 3 dimensiones) espacios paradójicos que desafían a los modos habituales de representación.
La obra de Maurits Cornelis Escher ha interesado a muchos matemáticos.
No fue precisamente un estudiante brillante, y sólo llegó a destacar en las clases de dibujo. En 1919 y bajo presión paterna empieza los estudios de arquitectura en la Escuela de Arquitectura y Artes Decorativas de Haarlem, estudios que abandonó poco después para pasar como discípulo de un profesor de artes gráficas, Jessurum de Mesquitas. Adquirió unos buenos conocimientos básicos de dibujo, y destacó sobremanera en la técnica de grabado en madera, la cual llegó a dominar con gran maestría.
Polya nació en Budapest el 13 de diciembre de 1887. En un principio no se sintió especialmente atraído por las matemáticas, sino por la literatura y la filosofía. Su profesor de esta última, el Prof. Alexander, le sugirió que siguiera cursos de física y de matemáticas para mejorar su formación filosófica. Este consejo marcó para siempre su carrera. Las magníficas lecciones de Física de Loránd Eötvös, y las no menos excelentes de Matemáticas de Lipót Fejér influyeron decisivamente en la vida y obra de Pólya. Entre los discípulos de Fejér estaban Marcel Riesz, Otto Szás, Mihaly Fekete, Gábor Szegö, Tibor Radó, y más tarde Paul Erdös y Paul Turán. Además de las clases "regulares", Fejér se reunía con ellos en un café de Budapest y resolvía problemas mientras les contaba historias y anécdotas sobre los matemáticos que había conocido.
En 1940, huyendo de Hitler, Pólya y su esposa suiza (Stella V. Weber) se trasladaron a los Estados Unidos. Pólya hablaba (según él, bastante mal) además del húngaro, alemán, francés e inglés, y podía leer y entender algunos más. Se instalaron en California, y obtuvo trabajo en la Universidad de Stanford. Durante su larga vida, académica y profesional, Pólya recibió numerosos premios y galardones por su excepcional trabajo sobre la enseñanza de las matemáticas y su importantísima obra investigadora.
Hueso nazari
El hueso nazarí es un polígono cóncavo de doce lados, se obtiene a partir de un cuadrado en el que se recortan dos trapecios de dos lados opuestos y se colocan mediante giros en los otros dos lados también opuestos. Como en todos los polígonos nazaríes se conserva el área del polígono inicial.
EL PETALO
La dinastía nazarí, descendiente de Yusuf ben Nazar, reinó en Granada desde el siglo XIII al XV. Granada en general, y La Alhambra, en particular, vivieron entonces una época de esplendor que ha quedado reflejada en sus construcciones.
Una tesela utilizada para recubrir los zócalos de la Alambra es la conocida como “pétalo nazarí” esta figura se obtiene a partir de un rombo formado por dos triángulos equiláteros, mediante la traslación de dos pequeños segmentos circulares que se recortan de dos de los lados y se colocan en los lados paralelos.
El pétalo ha sido utilizado por otras culturas y religiones para recubrir superficies, por ejemplo en la catedral de Burgos.
jueves, 29 de enero de 2009
6. Geometria
Los solidos platonicos
La geometría es una rama de las matemáticas que se ocupa de las propiedades del espacio, como son: puntos, rectas, planos, polígonos, poliedros, curvas, superficies, etc. Sus orígenes se remontan a la solución de problemas concretos relativos a medidas y es la justificación teórica de muchos instrumentos, por ejemplo el compás, el teodolito y el pantógrafo.
Así mismo, da fundamento teórico a inventos como el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales) y es útil en la preparación de diseños (justificación teórica de la geometría descriptiva, del dibujo técnico e incluso en la fabricación de artesanías).
7. Fichas de matematicas
Ficha 2.1
Los tres condenados
Tres ladrones, que llamaremos A, B y C, fueron capturados mientras robaban en el palacio de un Gobernador despótico, y condenados a muerte por él mismo.
Antes de cumplirse la sentencia, el Gobernador se arrepintió de su severidad, y decidió indultar a uno de los tres presos. Para procurar que este beneficio recayese en el más inteligente de los tres condenados, dispuso lo siguiente:
A la vista de los presos mostró tres tiras de paño blanca y dos tiras negras. Después ordenó que a la espalda de cada preso por separado se colgase una de estas cinco tiras. Hecho esto, permitió que los presos se viesen libremente entre sí, pero que no se comunicasen. Prometió la libertad al primero que supiese acertar, con razonamiento infalible, el color de su tira.El preso A vio que las tiras de B y C eran blancas y a los pocos segundos pidió ser llevado ante el Gobernador, quien expuso la respuesta acertada.¿Qué fue lo que dijo A y cómo lo razonó?
-Inmediatamente A sospechó que su tira era blanca porque en caso contrario B vería una cinta negra, la de A más una cinta blanca, la de C. Y por bruto que fuese B debería razonar así: Puesto que A la lleva negra y C no grita que está viendo dos negras (y que por tanto la suya es blanca) es que yo llevo la blanca. El hecho de que B no hubiese hecho esta deducción al instante, convenció enseguida a A de que su propia cinta era blanca. Y cómo necesitó unos segundos menos que B y que C para hacer este razonamiento (que B y C debieran haber hecho idénticamente) se demostró la mayor inteligencia de A que fue indultado.
Triquis y traques
Los triquis y los traques son dos curiosas tribus que tienen esta notable particularidad: Que los hombres triquis mienten siempre, mientras que los traques no mienten jamás.
Un explorador, que se deslizaba por el río a bordo de una barca conducida por un indígena, vio en la orilla a otro indígena que por su apariencia física se adivinaba de tribu contraria a la de su barquero. -¿De qué tribu eres tú?- interrogó el explorador al hombre de la orilla.
La respuesta se hizo confusa, por la distancia, y el explorador preguntó a su barquero: -¿Qué es lo que me ha respondido? -Dice que es un traque- contestó el barquero.Se trata ahora de saber a qué tribu pertenecía cada uno de los indígenas.
-La clave para averiguarlo es fijarse en que a la primera pregunta del explorador, todos deben contestar que son traques (si lo son, porque es verdad; si no lo son, para mentir). Luego el barquero reprodujo la respuesta exacta. Luego el barquero es traque y el de la orilla es triqui.
FICHA 1.3
1- ¿De cuántas formas diferentes se pueden juntar 8€ utilizando solo monedas de 2€, 1€ y 0.50 €?
2- Un motorista sale de su casa para acudir a una cita. Se da cuenta de que si viaja a 60 km/h llegará un cuarto de hora tarde, pero si lo hace a 100 km/h llegará un cuarto de hora antes. ¿A qué distancia está su destino?
3- Si los miembros de un grupo bailan de dos en dos, sobra uno. Si lo hacen de tres en tres, sobran dos, y si lo hacen de cinco en cinco también sobran dos.¿Cuántas personas componen el grupo sabiendo que su número está comprendido entre 10 y 20? ¿Y si estuviera comprendido entre 30 y 50?4- Utilizando solamente la cifra 5 y las operaciones oportunas se puede obtener cualquier número.Por ejemplo, para obtener 6 podemos hacer:55: 5 – 5 = 6Busca la manera de obtener con la mínima cantidad de cincos:a) Los veinte primeros números naturales.b) Los números 111 y 125.c) Los números 500, 1000 y 3000.
5- Un nenúfar, en un lago, dobla su tamaño todos los días. En un mes cubre todo el lago. ¿Cuánto tiempo tardarán dos nenúfares en cubrir todo el lago?
6- ¿Son ciertas las siguientes afirmaciones? Razona tus respuestas.a) La suma de dos números consecutivos no es múltiplo de dos.b) La suma de dos impares consecutivos no es múltiplo de cuatro.c) La suma de tres números naturales consecutivos es múltiplo de tres.
7- ¿Cuántos capicúas existen de cuatro cifras en los que las dos cifras extremas suman lo mismo que las dos centrales?
8- ¿Cuántos tramos de carretera son necesarios para comunicar cuatro ciudades de forma que desde cada una se pueda llegar a cualquier otra sin pasar por una tercera? ¿Y para comunicar cinco ciudades?¿Y para comunicar n ciudades?
9- Un grupo de amigos va a comer a un restaurante chino. Cada dos comparten un plato de arroz, cada 3 uno de salsa y cada cuatro uno de carne. En total se sirvieron 65 platos. ¿Cuántos amigos fueron a comer?
10- ¿En cuantos ceros acaba el número 125!?
11- ¿Cuál es el último dígito de la expresión 2 (elevado a 103) + 3 ?
12- De los 30 alumnos y alumnas de una clase, 15 declaran ser aficionados al rock, y 13, al bacalao. Hay 6 de ellos que son aficionados a ambos ritmos musicales. ¿Cuántos no son aficionados ni a lo uno ni a lo otro?
FICHA 1.2
1) Coloca diez soldaditos sobre una mesa de modo que haya cinco filas de cuatro soldaditos.
2) ¿Cuántos 9 se utilizan para escribir todos los números del 0 300?
3) Quita 8 pasillos de la figura que tiene 24.a) Quita 8 para que queden 5 cuadrados.b) Quita 8 para que queden 4 cuadrados.
4) El producto de las edades de tres personas es 390 ¿Cuáles son dichas edades?
5) Sitúa doce soldaditos sobre una mesa de modo que haya seis filas de cuatro soldaditos
.6) Cuatro vacas suizas y tres autóctonas dan tanta leche en cinco días como tres vacas suizas y cinco autóctonas en cuatro días. ¿Que vaca es mejor lechera, la suiza o la autóctona?
7) El primer digito de un número de seis cifras es 1. Si se mueve al otro extremo, a la derecha, manteniendo el orden del resto de las cifras, el nuevo número es tres veces el primero. ¿Cuál es el número original?
8) Un amigo le dice al otro:- Tengo tres hijas, el producto de sus edades es 36 y su suma coincide con el número de esta casa.- No puedo averiguar las edades, responde el amigo.- ¡Ah! Es cierto. La mayor toca el piano.- Ya sé las edades de tus hijas.¿Cuáles son?
9) Cambiando solo tres cifras de lugar, has de conseguir invertir el triangulo, poniendo la base arriba y el vértice abajo.10) TRES CABALLEROS CON SUS ESCUDEROS. Tres caballeros, cada uno con su escudero, se reunieron para cruzar un río. Encontraron una barca pequeña de dos plazas. Pero surgió una dificultad: todos los escuderos se niegan a permanecer con caballeros desconocidos sin la presencia de su amo. No valieron amenazas. Los testarudos escuderos se mantuvieron en lo suyo. Las seis personas a la otra orilla cumpliendo la condición.¿Cómo lo hicieron?
viernes, 9 de enero de 2009
2. grandes matematicos
La teoría de conjuntos es una división de las matemáticas que estudia los conjuntos. El primer estudio formal sobre el tema fue realizado por el matemático alemán Georg Cantor en el Siglo XIX y más tarde reformulada por Zermelo.
El concepto de conjunto es intuitivo y se podría definir como una "colección de objetos"; así, se puede hablar de un conjunto de personas, ciudades, gafas, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema ZFC. Sin embargo, sigue siendo célebre la definición que publicó Cantor.
Bertrand Russell (1872 - 1972) mostró que este principio para determinar conjuntos era paradójico y en consecuencia, que la estructura propuesta por Cantor, padecía en su base de una contradicción que causaba su desplome. Esta situación conllevó a la conocida crisis de los fundamentos de la matemática que por mucho tiempo dejó un vacío completo, después de un logro tan grande.
hace 1 año
Georg Cantor (n. San Petersburgo, 3 de marzo de 1845, m. Halle, 6 de enero de 1918 ) fue un matemático alemán, inventor con Dedekind de la teoría de conjuntos, que es la base de las matemáticas modernas. Gracias a sus atrevidas investigaciones sobre los conjuntos infinitos fue el primero capaz de formalizar la noción de infinito bajo la forma de los números transfinitos (cardinales y ordinales).
Cantor descubrió que los conjuntos infinitos no tienen siempre el mismo tamaño, o sea el mismo cardinal: por ejemplo, el conjunto de los racionales es enumerable, es decir, del mismo tamaño que el conjunto de los naturales, mientras que el de los reales no lo es: existen, por lo tanto, varios infinitos, más grandes los unos que los otros. Entre estos infinitos, los hay tan grandes que no tienen correspondencia en el mundo real, asimilado al espacio vectorial R³.
En 1872-1895 Es creada la Teoría de Conjuntos por el matemático ruso Georg Cantor.
George Cantor (1845 - 1918) creador del edificio maravilloso de la teoría de Conjuntos, que permitía prácticamente expresar cualquier rama de la matemática en términos de este lenguaje unificador y perfecto, estableció como uno de sus principios para la determinación de conjuntos el siguiente: