viernes, 28 de noviembre de 2008

matematicos ilustres

Difícilmente podría decirse que el camino de Newton a la fama estaba predeterminado. Su nacimiento fue prematuro, y durante algún tiempo pareció que no sobreviviría debido a su debilidad física. Su padre murió tres meses antes de que naciera . Cuando Newton tenía dos años de edad, su madre volvió a casarse, y el niño se fue a vivir con su anciana abuela a una granja de Woolsthorpe. Fue probablemente aquí, en un distrito de Inglaterra, donde adquirió facultades de meditación y concentración que más tarde le permitieron analizar y encontrar la solución de problemas que desconcertaban a otros científicos. Cuando Newton tenía doce años, ingresó en la Escuela del Rey, donde vivió con un boticario llamado Clark, cuya esposa era amiga de la madre de Newton. Pasó cuatro años en ese hogar, en el que se divertía construyendo toda clase de molinos de viento, carros mecánicos, relojes de agua y cometas. Encontró un desván lleno de libros científicos que le encantaba leer, y toda suerte de sustancias químicas. Cuando tenía dieciséis años, murió su padrastro, y el muchacho volvió a casa a fin de ayudar a su madre en la administración de su pequeña propiedad, pero Newton no sentía inclinación a la vida del campo. Por fin, se decidió que continuará su carrera académica e ingresó en el Colegio de la Trinidad, de Cambridge. Newton no se distinguió en el primer año de estudios en Cambridge. Pero por fortuna, tuvo la ayuda valiosa de Barrow, distinguido profesor de matemáticas. Barrow quedó impresionado con las aptitudes de Newton y en 1664, lo recomendó para una beca de matemáticas. Gracias a la instrucción de Barrow, tenía un excelente fundamento en la geometría y la óptica. Se familiarizó con la geometría algebraica de Descartes; conocía la óptica de Kepler, y estudió la refracción de la luz, la construcción de los telescopios y el pulimento de las lentes.
Einstein, Albert (1879-1955), físico alemán nacionalizado estadounidense. Premio Nobel, famoso por ser el autor de las teorías general y restringida de la relatividad y por sus hipótesis sobre la naturaleza corpuscular de la luz. Es probablemente el científico más conocido del siglo XX. Desde temprano manifestó una fuerte capacidad de comprensión matemática, rama que estudió y de la que profesor.En 1905 se doctoró por la Universidad de Zurich, con una tesis sobre las dimensiones de las moléculas. Publicó tres artículos teóricos de gran valor para el desarrollo de la física del siglo XX:1º. El movimiento browniano, sobre el movimiento aleatorio de las partículas en un fluido.2º. El efecto fotoeléctrico, embrión de la nueva teoría sobre la naturaleza de la luz, según la cual bajo ciertas circunstancias la luz se comporta como una partícula.El fotón, es decir la energía que llevaba toda partícula de luz, era proporcional a la frecuencia de la radiación: E = hu, donde E es la energía de la radiación, h una constante universal llamada constante de Planck y u es la frecuencia de la radiación.Esta teoría, que planteaba que la energía de los rayos luminosos se transfería en unidades individuales llamadas cuantos, contradecía las teorías anteriores que consideraban que la luz era la manifestación de un proceso continuo. Las tesis de Einstein apenas fueron aceptadas. 3º. Sobre la electrodinámica de los cuerpos en movimiento, que formula lo que después se conocerá como la teoría especial o restringidade la relatividad.Desde Isaac Newton hasta ahora, la relación entre la naturaleza de la materia y la radiación estaba sujeta a las leyes mecánicas: visión mecánica del mundo, o a las leyes electricas: visión electromagnética del mundo. Ninguna de las dos era capaz de explicar la interacción de la radiación (por ejemplo, la luz) y la materia al ser observadas desde diferentes sistemas de inercia de referencia, o sea, la interacción producida en la observación simultánea por una persona parada y otra moviéndose a una velocidad constante.En la primavera de 1905, tras haber reflexionado sobre estos problemas durante diez años, se dio cuenta de que la solución no estaba en la teoría de la materia sino en la teoría de las medidas. En el fondo de su teoría restringida de la relatividad se encontraba el hallazgo de que toda medición del espacio y del tiempo es subjetiva. Esto le llevó a desarrollar una teoría basada en dos premisas: el principio de la relatividad, según el cual las leyes físicas son las mismas en todos los sistemas de inercia de referencia, y el principio de la invariabilidad de la velocidad de la luz, según el cual la velocidad de la luz en el vacío es constante. De este modo pudo explicar los fenómenos físicos observados en sistemas de inercia de referencia distintos, sin tener que entrar en la naturaleza de la materia o de la radiación y su interacción, pero nadie entendió su razonamiento. La dificultad de otros científicos para aceptar su teoría, se situaba más en una problema de concepto que de complejos cálculos matemáticos y su dificultad técnica.Einstein sostenía que la única fuente del conocimiento era la experiencia, pero también pensaba que las teorías eran creaciones de una aguda intuición física, y que las premisas en que se basaban no podían aplicarse de un modo lógico al experimento. Una buena teoría sería, pues, aquella que necesitara los mínimos postulados para explicar un hecho físico.Posteriormente, 1907, comenzó a trabajar en la generalización de la teoría de la relatividad. Empezó con el enunciado del principio de equivalencia según el cual los campos gravitacionales son equivalentes a las aceleraciones del sistema de referencia (1916).

Matemático, Físico, Astrónomo y Astrólogo italiano, a quien se debe la popularización y generalización del Método Científico, basado en la experimentación y la confrontación inductiva deductivaGalileo Galilei: Tenacidad y Pasión (Pisa, 1564; Arcetri, Florencia, 1642). "La Naturaleza y la Biblia derivan de Dios, y es absurdo querer contradecir la Naturaleza que es la expresión directa de la voluntad divina sobre la base de la interpretación humana de las Sagradas Escrituras. Por el contrario, se debe aprender a leer e interpretar las escrituras a través de la Naturaleza".. El párrafo anterior, parte del alegato que pronunciara Galileo ante el tribunal de la inquisición en 1633, ilustra a la perfección la dicotomía que gobernó toda su creación científica, en contraposición con sus creencias católicas y los azarosos avatares que jalonaron su vida particular. Hijo de Vicenzo Galilei, reconocido músico, que renovara en buena medida la escritura musical de la época, y de Guilia Ammanmati, nacida en Pescia; Galileo fue el mayor de siete hermanos, y, desde temprana edad hubo de enfrentar la dureza de una formación rigurosa, en no pocas ocasiones alejado de sus familiares..




Pitágoras (c. 582-c. 500 a.C.), filósofo y matemático griego, cuyas doctrinas influyeron mucho en Platón. Nacido en la isla de Samos, Pitágoras fue instruido en las enseñanzas de los primeros filósofos jonios Tales de Mileto, Anaximandro y Anaxímenes. Se dice que Pitágoras había sido condenado a exiliarse de Samos por su aversión a la tiranía de Polícrates. Hacia el 530 a.C. se instaló en Crotona, una colonia griega al sur de Italia, donde fundó un movimiento con propósitos religiosos, políticos y filosóficos, conocido como pitagorismo. La filosofía de Pitágoras se conoce sólo a través de la obra de sus discípulos.Doctrinas básicasLos pitagóricos asumieron ciertos misterios, similares en muchos puntos a los enigmas del orfismo. Aconsejaban la obediencia y el silencio, la abstinencia de consumir alimentos, la sencillez en el vestir y en las posesiones, y el hábito del autoanálisis. Los pitagóricos creían en la inmortalidad y en la transmigración del alma. Se dice que el propio Pitágoras proclamaba que él había sido Euphorbus, y combatido durante la guerra de Troya, y que le había sido permitido traer a su vida terrenal la memoria de todas sus existencias previas.Teoría de los númerosEntre las amplias investigaciones matemáticas realizadas por los pitagóricos se encuentran sus estudios de los números pares e impares y de los números primos y de los cuadrados, esenciales en la teoría de los números. Desde este punto de vista aritmético, cultivaron el concepto de número, que llegó a ser para ellos el principio crucial de toda proporción, orden y armonía en el universo. A través de estos estudios, establecieron una base científica para las matemáticas. En geometría el gran descubrimiento de la escuela fue el teorema de la hipotenusa, conocido como teorema de Pitágoras, que establece que el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados.AstronomíaLa astronomía de los pitagóricos marcó un importante avance en el pensamiento científico clásico, ya que fueron los primeros en considerar la tierra como un globo que gira junto a otros planetas alrededor de un fuego central. Explicaron el orden armonioso de todas las cosas como cuerpos moviéndose de acuerdo a un esquema numérico, en una esfera de la realidad sencilla y omnicomprensiva. Como los pitagóricos pensaban que los cuerpos celestes estaban separados unos de otros por intervalos correspondientes a longitudes de cuerdas armónicas, mantenían que el movimiento de las esferas da origen a un sonido musical, la llamada armonía de las esferas.






No hay comentarios: